Nonstationary Time Series Data and Cointegration

Chapter 12

Prepared by Vera Tabakova, East Carolina University

Chapter 12: Nonstationary Time Series Data and Cointegration

- 12.1 Stationary and Nonstationary Variables
- 12.2 Spurious Regressions
- 12.3 Unit Root Tests for Stationarity
- 12.4 Cointegration
- 12.5 Regression When There is No Cointegration

Principles of Econometrics, 3rd Edition

12.1 Stationary and Nonstationary Variables

Figure 12.1(a) US economic time series

12.1 Stationary and Nonstationary
Variables $E(y_t) = \mu$ (12.1a) $var(y_t) = \sigma^2$ (12.1b) $var(y_t, y_{t+s}) = cov(y_t, y_{t-s}) = \gamma_s$ (12.1c)Principles of Econometrics, 3rd EditionStde 12.5

12.1 Stationary and Nonstationary Variables

	Sample periods	
Variable	1985:1 to 1994:4	1995:1 to 2004:4
Real GDP (a)	5587.7	9465.4
Inflation rate (c)	3.5	2.4
Federal Funds rate (e)	6.3	4.1
Bond rate (g)	7.2	4.7
Change in GDP (b)	79.9	119.1
Change in the inflation rate (d)	-0.03	0.02
Change in the Federal Fund rate (f)	-0.1	-0.1
Change in the Bond rate (h)	-0.1	-0.1

12	.1.2 Random Walk Models	
	$E(y_{t}) = y_{0} + E(v_{1} + v_{2} + + v_{t}) = y_{0}$ var $(y_{t}) = var(v_{1} + v_{2} + + v_{t}) = t\sigma_{v}^{2}$	
	$y_t = \alpha + y_{t-1} + v_t$	(12.3b)
Principle	s of Econometrics, 3rd Edition	Slide 12-14

4

12.3.4 The Dickey-Fuller Testing Procedure

First step: plot the time series of the original observations on the variable.

- If the series appears to be wandering or fluctuating around a sample average of zero, use test equation (12.5a).
- If the series appears to be wandering or fluctuating around a sample average which is non-zero, use test equation (12.5b).
- If the series appears to be wandering or fluctuating around a linear trend, use test equation (12.5c).

Slide I

12.3.4 The Dickey-Fuller Testing Procedure

Model	1%	5%	10%
$\Delta y_t = \gamma y_{t-1} + v_t$	-2.56	-1.94	-1.62
$\Delta y_t = \alpha + \gamma y_{t-1} + v_t$	-3.43	-2.86	-2.57
$\Delta y_t = \alpha + \lambda t + \gamma y_{t-1} + v_t$	-3.96	-3.41	-3.13
Standard critical values	-2.33	-1.65	-1.28

12.3.4 The Dickey-Fuller Testing Procedure

 An important extension of the Dickey-Fuller test allows for the possibility that the error term is autocorrelated.

$$\Delta y_{t} = \alpha + \gamma y_{t-1} + \sum_{s=1}^{m} a_{s} \Delta y_{t-s} + v_{t}$$
(12.6)

 $\Delta y_{t-1} = (y_{t-1} - y_{t-2}), \ \Delta y_{t-2} = (y_{t-2} - y_{t-3}), \dots$

• The unit root tests based on (12.6) and its variants (intercept excluded or trend included) are referred to as **augmented Dickey-Fuller tests**.

nciples of Econometrics, 3rd Edition

12.3.5 The Dickey-Fuller Tests: An Example

$$\begin{split} \Delta F_t &= 0.178 - 0.037 F_{t-1} + 0.672 \Delta F_{t-1} \\ (tau) & (-2.090) \end{split}$$

$$\begin{split} \Delta B_{t} &= 0.285 - 0.056 B_{t-1} + 0.315 \Delta B_{t-1} \\ (tau) & (-1.976) \end{split}$$

ciples of Econometrics, 3rd Edition

$\Delta y_t = y_t - y_{t-1} = v_t$	
$\Delta(\Delta F) = -0.340(\Delta F)$	
(tau) (-4.007)	
$\Delta (\Delta B)_{t} = -0.679 (\Delta B)_{t-1}$	
(<i>tau</i>) (-6.415)	

12.4 Cointegration	
$\Delta \hat{e}_{i} = \gamma \hat{e}_{i-1} + v_{i}$	(12.7)
Case 1: $\hat{e}_t = y_t - bx_t$	(12.8a)
<i>Case</i> 2: $\hat{e}_{t} = y_{t} - b_{2}x_{t} - b_{1}$	(12.8b)
$Case \ 3: \ \hat{e}_t = y_t - b_2 x_t - b_1 - \hat{\delta}t$	(12.8c)
Principles of Econometrics, 3rd Edition	Slide 12-31

Regression model	1%	5%	10%
1) $y_t = \beta x_t + e_t$	-3.39	-2.76	-2.45
$2) y_t = \beta_1 + \beta_2 x_t + e_t$	-3.96	-3.37	-3.07
3) $y_t = \beta_1 + \delta t + \beta_2 x_t + e_t$	-3.98	-3.42	-3.13

12.5 Regression When There Is No Cointegration

• 12.5.1 First Difference Stationary

$$y_t = y_{t-1} + v_t$$

$$\Delta y_t = y_t - y_{t-1} = v_t$$

The variable y_t is said to be a **first difference stationary** series.

rinciples of Econometrics, 3rd Edition

Slide 12-2

12.5.2 Trend Stationary

To summarize:

- If variables are stationary, or I(1) and cointegrated, we can estimate a regression relationship between the levels of those variables without fear of encountering a spurious regression.
- If the variables are I(1) and not cointegrated, we need to estimate a relationship in first differences, with or without the constant term.
- If they are trend stationary, we can either de-trend the series first and then perform regression analysis with the stationary (de-trended) variables or, alternatively, estimate a regression relationship that includes a trend variable. The latter alternative is typically applied.

rinciples of Econometrics, 3rd Editi

Slide 12-38

Keywords	
 Augmented Dickey-Fuller test Autoregressive process Cointegration Dickey-Fuller tests Mean reversion Order of integration Random walk process Random walk with drift Spurious regressions Stationary and nonstationary Stochastic process Stochastic trend Tau statistic Trend and difference stationary Unit root tests 	
Principles of Econometrics, 3rd Edition	Slide 12-39